We derive two probabilistic bounds for the relative forward error in the floating point summation of $n$ real numbers, by representing the roundoffs as independent, zero-mean, bounded random variables. The first probabilistic bound is based on Azuma's concentration inequality, and the second on the Azuma-Hoeffding Martingale. Our numerical experiments illustrate that the probabilistic bounds, with a stringent failure probability of $10^{-16}$, can be 1-2 orders of magnitude tighter than deterministic bounds. We performed the numerical experiments in Julia by summing up to $n=10^7$ single precision (binary32) floating point numbers, and up to $n=10^4$ half precision (binary16) floating point numbers. We simulated exact computation with double precision (binary64). The bounds tend to be tighter when all summands have the same sign.
翻译:我们从实际数字的浮动点加起来的相对远差中得出两个概率界限。 通过将四舍五入作为独立的、零平均值的、受约束的随机变量来代表实际数字的数值。 第一个概率界限以Azuma的浓度不平等为基础,第二个以Azuma-Hoffing Martingale为基准。 我们的数值实验表明,概率界限的严格失败概率为 10 ⁇ -16 美元,可能是比确定性界限更紧的1-2级数量级。 我们在朱丽亚进行了数值实验,将单精准值(二进制32)和半精度(二进制16 ) 等于 10 4 美元(二进制16 ) 。 我们模拟了双精度(二进制64) 的精确计算。 当所有总和都具有相同的符号时, 界限会更加紧凑。