Mammography is used as a standard screening procedure for the potential patients of breast cancer. Over the past decade, it has been shown that deep learning techniques have succeeded in reaching near-human performance in a number of tasks, and its application in mammography is one of the topics that medical researchers most concentrate on. In this work, we propose an end-to-end Curriculum Learning (CL) strategy in task space for classifying the three categories of Full-Field Digital Mammography (FFDM), namely Malignant, Negative, and False recall. Specifically, our method treats this three-class classification as a "harder" task in terms of CL, and create an "easier" sub-task of classifying False recall against the combined group of Negative and Malignant. We introduce a loss scheduler to dynamically weight the contribution of the losses from the two tasks throughout the entire training process. We conduct experiments on an FFDM datasets of 1,709 images using 5-fold cross validation. The results show that our curriculum learning strategy can boost the performance for classifying the three categories of FFDM compared to the baseline strategies for model training.


翻译:乳房X射线照相是针对乳腺癌潜在患者的标准筛查程序。过去十年来,我们发现深层学习技术成功地在一系列任务中取得了接近人的性能,在乳房X射线摄影中的应用是医学研究人员最集中的课题之一。在这项工作中,我们提议在任务空间中采用端到端课程学习(CL)战略,对全场数字乳房照相(FFDM)的三个类别进行分类,即Malagnant、负值和假记。具体地说,我们的方法将这一三层分类作为CL的“硬”任务处理,并创建了一个“较易”的子任务,将假记分类与负数和Malagnant的组合进行分类。我们引入了一种损失计时器,以动态方式权衡整个培训过程中的两项任务所造成的损失。我们用5倍的交叉验证方法对1 709幅图像的FFDM数据集进行了实验。结果显示,我们的课程学习战略可以提高将FFDDDM分为三类的绩效,与示范培训的基线战略相比较。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
9+阅读 · 2021年2月25日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
24+阅读 · 2021年1月25日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员