This report investigates an unsupervised, feature-based image matching pipeline for the novel application of identifying individual k\=ak\=a. Applied with a similarity network for clustering, this addresses a weakness of current supervised approaches to identifying individual birds which struggle to handle the introduction of new individuals to the population. Our approach uses object localisation to locate k\=ak\=a within images and then extracts local features that are invariant to rotation and scale. These features are matched between images with nearest neighbour matching techniques and mismatch removal to produce a similarity score for image match comparison. The results show that matches obtained via the image matching pipeline achieve high accuracy of true matches. We conclude that feature-based image matching could be used with a similarity network to provide a viable alternative to existing supervised approaches.
翻译:本报告调查了一种未经监督的、基于地貌的图像匹配管道,用于对个人进行识别的新应用 : k ⁇ ak ⁇ a 。 与一个相似的分组网络一起应用, 解决了当前在识别个体鸟类方面受监督的薄弱环节, 这些鸟类难以处理向人口引进新人的问题。 我们的方法是使用目标定位, 在图像中定位 k ⁇ ak ⁇ a, 然后提取不易旋转和比例尺的本地特征。 这些特征在图像与近邻匹配技术和不匹配去除相匹配之间匹配, 以得出类似图像匹配比对的比分。 结果表明, 通过图像匹配管道获得的匹配匹配能够达到真实匹配的高度准确性。 我们的结论是, 基于地貌的图像匹配可以与类似网络一起使用, 为现有的受监督方法提供可行的替代方法。