Two vertex colorings of a graph are Kempe equivalent if they can be transformed into each other by a sequence of switchings of two colors of vertices. It is PSPACE-complete to determine whether two given vertex $k$-colorings of a graph are Kempe equivalent for any fixed $k\geq 3$, and it is easy to see that every two vertex colorings of any bipartite graph are Kempe equivalent. In this paper, we consider Kempe equivalence of {\it almost} bipartite graphs which can be obtained from a bipartite graph by adding several edges to connect two vertices in the same partite set. We give a conjecture of Kempe equivalence of such graphs, and we prove several partial solutions and best possibility of the conjecture.
翻译:图形的两个顶点颜色是 Kempe 等值, 如果它们可以通过两个顶点颜色的切换序列转换成对等 。 确定一个图形的两个给定的顶点 $k$- 彩色是否与任何固定的 $k\ geq 3 美元等值是 Kempe 等值, 很容易看到任何双面图形的每两个顶点颜色是 Kempe 等值 。 在本文中, 我们认为 Kempe 等值 几乎 是 双面图的双面图, 可以通过添加多个边缘连接同一部分的两条顶点来从双面图中获得 。 我们给出了这些图形的 Kempe 等值的推测, 我们证明这些图形有几种部分的解决方案, 也是最有可能的 。