Differentially private algorithms for common metric aggregation tasks, such as clustering or averaging, often have limited practicality due to their complexity or a large number of data points that is required for accurate results. We propose a simple and practical tool $\mathsf{FriendlyCore}$ that takes a set of points ${\cal D}$ from an unrestricted (pseudo) metric space as input. When ${\cal D}$ has effective diameter $r$, $\mathsf{FriendlyCore}$ returns a "stable" subset ${\cal D}_G\subseteq {\cal D}$ that includes all points, except possibly few outliers, and is {\em certified} to have diameter $r$. $\mathsf{FriendlyCore}$ can be used to preprocess the input before privately aggregating it, potentially simplifying the aggregation or boosting its accuracy. Surprisingly, $\mathsf{FriendlyCore}$ is light-weight with no dependence on the dimension. We empirically demonstrate its advantages in boosting the accuracy of mean estimation, outperforming tailored methods.


翻译:用于通用集成任务(如集成或平均)的不同私人算法通常因复杂性或准确结果所需的大量数据点而具有有限的实用性。 我们提出了一个简单实用的工具 $\ mathsf{ff}friendlyCore}$,它从一个不受限制( 假体) 的( 假体) 公用空间中取出一组点 $ $ cales D} 。 当 $\ cal D} 具有有效的直径美元时, $\ mathsf{ friendlyCore} $ 返回一个包含所有点的“ 稳定” 子子 $ ($$ cals\ g\ subseqeq ~ cal D}), 包括所有点, 可能只有很少的外端点, 并且 ~em 认证 } 其直径为 $. $\\ mathysf{ friendlyCore} $ 。 在私人集成之前, 可能简化集成或提高其精度时, 精确性。 。令人惊讶的是, $\\mathasf{ friendlyCore} sultsubly core} subly

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
11+阅读 · 2019年7月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月13日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员