The Lie-Trotter formula, together with its higher-order generalizations, provides a direct approach to decomposing the exponential of a sum of operators. Despite significant effort, the error scaling of such product formulas remains poorly understood. We develop a theory of Trotter error that overcomes the limitations of prior approaches based on truncating the Baker-Campbell-Hausdorff expansion. Our analysis directly exploits the commutativity of operator summands, producing tighter error bounds for both real- and imaginary-time evolutions. Whereas previous work achieves similar goals for systems with geometric locality or Lie-algebraic structure, our approach holds in general. We give a host of improved algorithms for digital quantum simulation and quantum Monte Carlo methods, including simulations of second-quantized plane-wave electronic structure, $k$-local Hamiltonians, rapidly decaying power-law interactions, clustered Hamiltonians, the transverse field Ising model, and quantum ferromagnets, nearly matching or even outperforming the best previous results. We obtain further speedups using the fact that product formulas can preserve the locality of the simulated system. Specifically, we show that local observables can be simulated with complexity independent of the system size for power-law interacting systems, which implies a Lieb-Robinson bound as a byproduct. Our analysis reproduces known tight bounds for first- and second-order formulas. Our higher-order bound overestimates the complexity of simulating a one-dimensional Heisenberg model with an even-odd ordering of terms by only a factor of $5$, and is close to tight for power-law interactions and other orderings of terms. This suggests that our theory can accurately characterize Trotter error in terms of both asymptotic scaling and constant prefactor.


翻译:利塔- 托斯特公式, 连同其更高层次的普通化, 提供了一种直接的方法, 分解操作者总和的指数化。 尽管做了大量的努力, 此类产品公式的错误缩放规模仍然没有得到很好的理解。 我们开发了一种Trotter错误理论, 克服了先前方法的局限性, 其基础是快速缩小贝克- 坎普贝尔- 豪斯多夫的扩张。 我们的分析直接利用了操作者总和的通缩性, 产生了真实和想象时间进化的更精确度。 尽管先前的工作在具有几何地或利耶- 梯结构的系统中实现了相似的目标, 我们的方法仍然维持着总体的。 我们提供了一系列改进的数字量模拟和数量蒙特卡洛方法的算法方法, 包括模拟二次量化的飞机波浪电子结构, $k$- 本地汉密尔密尔顿人, 集型汉密尔顿人, 反向字段的模型, 以及数量铁磁网, 几乎或超过以往的最佳结果。 我们得到了更近的快速的调,, 我们利用这个事实, 以更接近的更接近的精确的精确的公式的公式 来, 我们的精确的精确的公式的公式 定义可以保存着一个固定的系统,, 的系统, 显示着一个固定的系统, 的精确的系统, 的系统, 的精确的系统, 的精确的精确的系统, 显示的系统, 的精确的系统, 的系统, 的系统, 的系统, 显示的精确的系统, 的精确的系统,, 的系统, 的精确的精确的系统, 显示的精确的精确的系统, 显示的系统, 的系统, 显示的精确的精确的精确的系统。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员