This paper tackles the problem of millimeter-Wave (mmWave) channel estimation in massive MIMO communication systems. A new Bayes-optimal channel estimator is derived using recent advances in the approximate belief propagation (BP) Bayesian inference paradigm. By leveraging the inherent sparsity of the mmWave MIMO channel in the angular domain, we recast the underlying channel estimation problem into that of reconstructing a compressible signal from a set of noisy linear measurements. Then, the generalized approximate message passing (GAMP) algorithm is used to find the entries of the unknown mmWave MIMO channel matrix. Unlike all the existing works on the same topic, we model the angular-domain channel coefficients by Laplacian distributed random variables. Further, we establish the closed-form expressions for the various statistical quantities that need to be updated iteratively by GAMP. To render the proposed algorithm fully automated, we also develop an expectation-maximization (EM) based procedure that can be easily embedded within GAMP's iteration loop in order to learn all the unknown parameters of the underlying Bayesian inference problem. Computer simulations show that the proposed combined EM-GAMP algorithm under a Laplacian prior exhibits improvements both in terms of channel estimation accuracy, achievable rate, and computational complexity as compared to the Gaussian mixture prior that has been advocated in the recent literature. In addition, it is found that the Laplacian prior speeds up the convergence time of GAMP over the entire signal-to-noise ratio (SNR) range.
翻译:本文在大型 mIMO 通信系统中解决 mmm- Wave (mmWave) 频道估测问题。 新的 Bayes- 最优化频道估测器使用近似信仰传播( BB) Bayesian 推断范式的最新进展来生成。 我们利用在角域内mmWave MIMO 频道固有的广度, 将潜在的频道估测问题重新定位为从一组噪音线性测量中重建压缩信号的问题。 然后, 使用通用近似信息传递( GAMP) 算法来查找未知的 mm Wave MIMO 频道矩阵的条目。 与所有关于同一主题的现有工程不同, 我们用 Laplaceian 分布随机变量来模拟角度- 多方向频道的参数。 此外, 我们为需要由 GAMMP 同步更新的各种统计数量建立了封闭式表达方式。 为了使提议的算法完全自动化, 我们还开发了基于预期- 最接近( EM) 程序, 可以很容易嵌入 GAMP 的循环, 以便了解所有未知的最近速度参数参数, Laplain- Domasizean com ass ass ass ass ass assillational la assillation labal labal labal labal lacal lacal lacal labal labal lacal labilview labilview ma ma ma ma ma labiltical ma labil