This paper tackles the problem of millimeter-Wave (mmWave) channel estimation in massive MIMO communication systems. A new Bayes-optimal channel estimator is derived using recent advances in the approximate belief propagation (BP) Bayesian inference paradigm. By leveraging the inherent sparsity of the mmWave MIMO channel in the angular domain, we recast the underlying channel estimation problem into that of reconstructing a compressible signal from a set of noisy linear measurements. Then, the generalized approximate message passing (GAMP) algorithm is used to find the entries of the unknown mmWave MIMO channel matrix. Unlike all the existing works on the same topic, we model the angular-domain channel coefficients by Laplacian distributed random variables. Further, we establish the closed-form expressions for the various statistical quantities that need to be updated iteratively by GAMP. To render the proposed algorithm fully automated, we also develop an expectation-maximization (EM) based procedure that can be easily embedded within GAMP's iteration loop in order to learn all the unknown parameters of the underlying Bayesian inference problem. Computer simulations show that the proposed combined EM-GAMP algorithm under a Laplacian prior exhibits improvements both in terms of channel estimation accuracy, achievable rate, and computational complexity as compared to the Gaussian mixture prior that has been advocated in the recent literature. In addition, it is found that the Laplacian prior speeds up the convergence time of GAMP over the entire signal-to-noise ratio (SNR) range.


翻译:本文在大型 mIMO 通信系统中解决 mmm- Wave (mmWave) 频道估测问题。 新的 Bayes- 最优化频道估测器使用近似信仰传播( BB) Bayesian 推断范式的最新进展来生成。 我们利用在角域内mmWave MIMO 频道固有的广度, 将潜在的频道估测问题重新定位为从一组噪音线性测量中重建压缩信号的问题。 然后, 使用通用近似信息传递( GAMP) 算法来查找未知的 mm Wave MIMO 频道矩阵的条目。 与所有关于同一主题的现有工程不同, 我们用 Laplaceian 分布随机变量来模拟角度- 多方向频道的参数。 此外, 我们为需要由 GAMMP 同步更新的各种统计数量建立了封闭式表达方式。 为了使提议的算法完全自动化, 我们还开发了基于预期- 最接近( EM) 程序, 可以很容易嵌入 GAMP 的循环, 以便了解所有未知的最近速度参数参数, Laplain- Domasizean com ass ass ass ass ass assillational la assillation labal labal labal labal lacal lacal lacal labal labal lacal labilview labilview ma ma ma ma ma labiltical ma labil

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员