We show how to apply forward and reverse mode Combinatory Homomorphic Automatic Differentiation (CHAD) to total functional programming languages with expressive type systems featuring the combination of - tuple types; - sum types; - inductive types; - coinductive types; - function types. We achieve this by analysing the categorical semantics of such types in $\Sigma$-types (Grothendieck constructions) of suitable categories. Using a novel categorical logical relations technique for such expressive type systems, we give a correctness proof of CHAD in this setting by showing that it computes the usual mathematical derivative of the function that the original program implements. The result is a principled, purely functional and provably correct method for performing forward and reverse mode automatic differentiation (AD) on total functional programming languages with expressive type systems.


翻译:我们展示了如何将前向和反向模式混合式自动差异(CHAD)应用到具有表达型系统,具有全功能性编程语言的全功能式系统,其特点是组合型号:图普尔类型;总类型;感应类型;创用类型;创用类型;功能类型;功能类型。我们通过分析这类类型在适当类别中的绝对语义(Grothendieck complications)来实现这一目标。我们使用一种新型绝对逻辑关系技术来为这种表达型系统提供中国语的正确性证明,显示它计算了原程序所执行功能的通常数学衍生物。结果是一种原则性、纯功能性和可被证实正确无误的方法,用于对带有表达型系统的全部功能性编程语言进行前向和反向模式自动区分(AD)。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月24日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Multiple Combined Constraints for Image Stitching
Arxiv
3+阅读 · 2018年9月18日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员