In this work we give two new algorithms that use similar techniques for (non-monotone) submodular function maximization subject to a cardinality constraint. The first is an offline fixed parameter tractable algorithm that guarantees a $0.539$-approximation for all non-negative submodular functions. The second algorithm works in the random-order streaming model. It guarantees a $(1/2+c)$-approximation for symmetric functions, and we complement it by showing that no space-efficient algorithm can beat $1/2$ for asymmetric functions. To the best of our knowledge this is the first provable separation between symmetric and asymmetric submodular function maximization.
翻译:在这项工作中,我们给出了两种新的算法,这些算法使用类似的技术来(非分子)子模块函数最大化,但受一个基点限制。第一个是离线固定参数可移动算法,保证所有非负子模块函数的接近度为5.39美元。第二个算法在随机顺序流模式中运作。它保证对称函数的接近度值为1/2+c美元,我们通过显示任何空间高效算法都无法击败对称函数的1/2美元来补充它。据我们所知,这是对称和对称亚模块函数最大化的第一次可观测分离。