We present Neural Microfacet Fields, a method for recovering materials, geometry, and environment illumination from images of a scene. Our method uses a microfacet reflectance model within a volumetric setting by treating each sample along the ray as a (potentially non-opaque) surface. Using surface-based Monte Carlo rendering in a volumetric setting enables our method to perform inverse rendering efficiently by combining decades of research in surface-based light transport with recent advances in volume rendering for view synthesis. Our approach outperforms prior work in inverse rendering, capturing high fidelity geometry and high frequency illumination details; its novel view synthesis results are on par with state-of-the-art methods that do not recover illumination or materials.
翻译:我们提出了神经微平面场,这是一种从场景的图像中恢复材料、几何和环境照明的方法。我们的方法在体积设置中使用微平面反射模型,通过将沿着光线的每个样本视为(可能非不透明的)表面,从而在体积设置中使用基于表面的Monte Carlo渲染,使我们的方法能够高效地执行反演渲染。使用表面为基础的光传输方面的几十年研究结合最近在卷积渲染中的进展,从而使我们的方法在反演渲染方面优于先前的工作,捕获高保真度的几何形状和高频照明细节;其新颖的视图合成结果与不恢复照明或材料的最先进方法相当。