Visual-inertial odometry (VIO) systems traditionally rely on filtering or optimization-based techniques for egomotion estimation. While these methods are accurate under nominal conditions, they are prone to failure during severe illumination changes, rapid camera motions, or on low-texture image sequences. Learning-based systems have the potential to outperform classical implementations in challenging environments, but, currently, do not perform as well as classical methods in nominal settings. Herein, we introduce a framework for training a hybrid VIO system that leverages the advantages of learning and standard filtering-based state estimation. Our approach is built upon a differentiable Kalman filter, with an IMU-driven process model and a robust, neural network-derived relative pose measurement model. The use of the Kalman filter framework enables the principled treatment of uncertainty at training time and at test time. We show that our self-supervised loss formulation outperforms a similar, supervised method, while also enabling online retraining. We evaluate our system on a visually degraded version of the EuRoC dataset and find that our estimator operates without a significant reduction in accuracy in cases where classical estimators consistently diverge. Finally, by properly utilizing the metric information contained in the IMU measurements, our system is able to recover metric scene scale, while other self-supervised monocular VIO approaches cannot.


翻译:视觉内皮测量(VIO)系统传统上依靠过滤或优化技术来进行自我感动估计。这些方法在名义条件下是准确的,但在严重照明变化、快速照相机动作或低质图像序列中往往会失败。基于学习的系统有可能在具有挑战性的环境中优于典型的实施,但目前在名义环境中并不及传统方法。在这里,我们引入了一个培训混合VIO系统的框架,利用学习和标准过滤基础国家估计的优势。我们的方法建立在可区别的Kalman过滤器上,采用IMU驱动的进程模型和坚固的神经网络衍生的相对形状测量模型。使用Kalman过滤框架使得在培训时间和试验时间对不确定性进行有原则的处理成为可能胜过典型,但在名义环境中,我们自我监督的损失配方也不符合类似、监督的方法。我们对EuRoC数据集的可见退化版本进行了评估,发现我们的估测仪是在一个不同的Kalman过滤器上运行的,没有显著的、由IMU驱动的、由神经网络衍生的相对构成的测量模型模型模型模型模型模型模型模型模型模型。在最后阶段,无法持续地缩小了我们的模型的自我测量系统。

0
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员