Maintaining and updating shortest paths information in a graph is a fundamental problem with many applications. As computations on dense graphs can be prohibitively expensive, and it is preferable to perform the computations on a sparse skeleton of the given graph that roughly preserves the shortest paths information. Spanners and emulators serve this purpose. This paper develops fast dynamic algorithms for sparse spanner and emulator maintenance and provides evidence from fine-grained complexity that these algorithms are tight. Under the popular OMv conjecture, we show that there can be no decremental or incremental algorithm that maintains an $n^{1+o(1)}$ edge (purely additive) $+n^{\delta}$-emulator for any $\delta<1/2$ with arbitrary polynomial preprocessing time and total update time $m^{1+o(1)}$. Also, under the Combinatorial $k$-Clique hypothesis, any fully dynamic combinatorial algorithm that maintains an $n^{1+o(1)}$ edge $(1+\epsilon,n^{o(1)})$-spanner or emulator must either have preprocessing time $mn^{1-o(1)}$ or amortized update time $m^{1-o(1)}$. Both of our conditional lower bounds are tight. As the above fully dynamic lower bound only applies to combinatorial algorithms, we also develop an algebraic spanner algorithm that improves over the $m^{1-o(1)}$ update time for dense graphs. For any constant $\epsilon\in (0,1]$, there is a fully dynamic algorithm with worst-case update time $O(n^{1.529})$ that whp maintains an $n^{1+o(1)}$ edge $(1+\epsilon,n^{o(1)})$-spanner. Our new algebraic techniques and spanner algorithms allow us to also obtain (1) a new fully dynamic algorithm for All-Pairs Shortest Paths (APSP) with update and path query time $O(n^{1.9})$; (2) a fully dynamic $(1+\epsilon)$-approximate APSP algorithm with update time $O(n^{1.529})$; (3) a fully dynamic algorithm for near-$2$-approximate Steiner tree maintenance.


翻译:在图形中保存和更新最短路径信息是许多应用程序的根本问题。 由于在密度图形上计算的费用可能高得令人望而却步, 并且更可取的做法是在一个粗略的图表骨架上进行计算, 以大致保存最短路径信息。 Spanners 和模拟器为此目的。 本文开发了快速动态算法, 用于稀疏的打字器和模拟器维护, 并提供了这些精细复杂度的证据 。 在流行的 OMv 预测下, 我们显示, 任何用于保持 $%1+1美元( 美元+1美元) 的快速或递增算法 。 任何用于保持 $%1 美元( 0. 1美元) 的快速或递增 美元( 1 美元) 的快速算法, 也能够完全更新我们的动态 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月5日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员