The smooth heap and the closely related slim heap are recently invented self-adjusting implementations of the heap (priority queue) data structure. We analyze the efficiency of these data structures. We obtain the following amortized bounds on the time per operation: $O(1)$ for make-heap, insert, find-min, and meld; $O(\log\log n)$ for decrease-key; and $O(\log n)$ for delete-min and delete, where $n$ is the current number of items in the heap. These bounds are tight not only for smooth and slim heaps but for any heap implementation in Iacono and \"{O}zkan's pure heap model, intended to capture all possible "self-adjusting" heap implementations. Slim and smooth heaps are the first known data structures to match Iacono and \"{O}zkan's lower bounds and to satisfy the constraints of their model. Our analysis builds on Pettie's insights into the efficiency of pairing heaps, a classical self-adjusting heap implementation.
翻译:平滑的堆肥和密切相关的微薄的堆肥最近被发明为自我调整的堆肥(优先队列)数据结构。 我们分析这些数据结构的效率。 我们获得每个操作时间的下列摊销界限: 用于制肥、 插入、 查找和焊接的O(1)美元; 用于减少键的 O( log\ log n) 美元; 用于删除和删除的 $O( log n) 美元, 其中美元是目前堆积中的项目数量 。 这些界限不仅对于平滑和微薄的堆积而言很紧, 而且对于在 Iaconno 和\\\" O}kkan 纯的堆积模型中的任何堆积执行来说也非常紧紧。 目的是捕捉所有可能的“ 自我调整” 堆积执行。 平滑和平滑的堆肥是第一个已知的数据结构, 匹配Iaconno 和\\\ {O}zkan' kan的下限, 和满足模型的制约。 我们的分析建立在佩蒂的洞察到对配堆效率的洞察。