Spectral unmixing (SU) expresses the mixed pixels existed in hyperspectral images as the product of endmember and abundance, which has been widely used in hyperspectral imagery analysis. However, the influence of light, acquisition conditions and the inherent properties of materials, results in that the identified endmembers can vary spectrally within a given image (construed as spectral variability). To address this issue, recent methods usually use a priori obtained spectral library to represent multiple characteristic spectra of the same object, but few of them extracted the spectral variability explicitly. In this paper, a spectral variability augmented sparse unmixing model (SVASU) is proposed, in which the spectral variability is extracted for the first time. The variable spectra are divided into two parts of intrinsic spectrum and spectral variability for spectral reconstruction, and modeled synchronously in the SU model adding the regular terms restricting the sparsity of abundance and the generalization of the variability coefficient. It is noted that the spectral variability library and the intrinsic spectral library are all constructed from the In-situ observed image. Experimental results over both synthetic and real-world data sets demonstrate that the augmented decomposition by spectral variability significantly improves the unmixing performance than the decomposition only by spectral library, as well as compared to state-of-the-art algorithms.


翻译:超光谱图象中存在混合像素,是超光谱成份和丰度的产物,在超光谱成份和丰度中广泛使用。然而,光线、获取条件和材料的固有特性的影响,导致被识别的末端成份可在给定图像中以光谱方式变化(以光谱变异形式构筑)。为解决这一问题,最近的方法通常使用先天获得的光谱库来代表同一对象的多种特征光谱,但其中很少有明确提取光谱变异的。本文提出了光谱变异性扩大的稀薄非混合模型(SVASU),首次提取了光谱变异性。变异光谱可分为内在频谱和光谱变异性的两个部分,在SUM模型中同步地添加了限制丰度和变异性系数的常规术语。人们注意到,光谱变异性图书馆和内在光谱图书馆都是从Insitu观察的图像中构建的。在合成和光谱变异性模型上实验结果,只能通过光谱变异性图谱库的变异性模型来大大改进真实和变异性变异性,通过光学变异性图显示来显示,通过光学变异性变异性图显示,通过光学变异性图显示,通过光谱变异性图显示来扩大,仅光谱图显示,仅光谱图显示的光谱图显示,显示,显示的光谱系的光谱图显示的变异性变。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年9月23日
专知会员服务
44+阅读 · 2020年12月18日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
【图神经网络(GNN)结构化数据分析】
专知会员服务
116+阅读 · 2020年3月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员