This article proposes a deep neural network, namely CrackPropNet, to measure crack propagation on asphalt concrete (AC) specimens. It offers an accurate, flexible, efficient, and low-cost solution for crack propagation measurement using images collected during cracking tests. CrackPropNet significantly differs from traditional deep learning networks, as it involves learning to locate displacement field discontinuities by matching features at various locations in the reference and deformed images. An image library representing the diversified cracking behavior of AC was developed for supervised training. CrackPropNet achieved an optimal dataset scale F-1 of 0.755 and optimal image scale F-1 of 0.781 on the testing dataset at a running speed of 26 frame-per-second. Experiments demonstrated that low to medium-level Gaussian noises had a limited impact on the measurement accuracy of CrackPropNet. Moreover, the model showed promising generalization on fundamentally different images. As a crack measurement technique, the CrackPropNet can detect complex crack patterns accurately and efficiently in AC cracking tests. It can be applied to characterize the cracking phenomenon, evaluate AC cracking potential, validate test protocols, and verify theoretical models.


翻译:文章提议建立一个深层神经网络,即CrackPropNet,以测量沥青混凝土(AC)标本的裂变传播情况,为利用在裂变试验中收集的图像测量裂变传播情况提供了准确、灵活、高效和低成本的解决方案。CrackPropNet与传统的深层学习网络有很大不同,因为它涉及通过在参考和变形图像中不同地点的相匹配特征来学习定位迁移场的不连续性。为监督培训开发了一个代表AC多种裂变行为的图像库。CrackPropNet实现了F-1的最佳数据集比例为0.755和F-1的最佳数据集比例为0.781,运行速度为每秒26个框架。实验显示,低到中等水平的高山噪音对CrackPropNet的测量准确性影响有限。此外,模型展示了对根本不同图像的有希望的概括性。作为裂变测量技术,CrackPropNet可以在AC裂变试验中准确和高效地检测复杂的裂变形模式。它可以用于确定裂变形现象的特征,评估AC断裂变形现象,评估AC的潜能、验证测试和理论模型。</s>

0
下载
关闭预览

相关内容

狂野飙车(Asphalt) 是由Gameloft开发的一款竞速类游戏系列,于2004年11月15日发行第一部作品《狂野飙车GT》。
该系列游戏中的狂野飙车6:火线追击(Asphalt 6: Adrenaline)于2011年发布了Mac OS X版本, 这是该系列游戏首次登录了除手机、掌机平台之外的平台。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员