Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of $\textit{multi-point query}$, i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose applying Bayesian Algorithm Execution (BAX) to instead query and model individual beam-size measurements. BAX avoids the slow multi-point query on the accelerator by acquiring points through a $\textit{virtual objective}$, i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. Here, we use BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, BAX is 20$\times$ faster and more robust to noise compared to existing methods. In live LCLS and FACET-II tests, BAX performed the first automated emittance tuning, matching the hand-tuned emittance at FACET-II and achieving a 24% lower emittance at LCLS. Our method represents a conceptual shift for optimizing multi-point queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.


翻译:尽管光线传输对于高亮度加速器的性能至关重要,但优化往往时间有限,因为通常通过四极扫描完成的光度计算一般都是缓慢的。这种计算是一种美元(textit{多点查询}美元)的类型,即每个查询都需要多项二级测量。传统的黑盒优化器,如巴耶斯优化等,在处理此类目标时速度缓慢且效率低下,因为它们必须获得全系列的测量,但只返回排放,每个查询都返回。我们提议采用Bayesian Algoorithm 执行(BAX)来代替查询和模型个人光度尺寸测量。BAX避免在加速器上进行缓慢的多点查询,通过美元(textit{多点查询}多点查询}美元,即每个查询需要多个二级测量。例如,从快速学习的模型而不是直接从加速器中计算出排放目标。在这里,我们使用BAX来尽可能降低速度的调试,在LCLCLSLS(BX)和高级ARC(AII)的快速测试工具,在高级测试中可以快速进行。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员