This paper proposes a novel method of learning by predicting view assignments with support samples (PAWS). The method trains a model to minimize a consistency loss, which ensures that different views of the same unlabeled instance are assigned similar pseudo-labels. The pseudo-labels are generated non-parametrically, by comparing the representations of the image views to those of a set of randomly sampled labeled images. The distance between the view representations and labeled representations is used to provide a weighting over class labels, which we interpret as a soft pseudo-label. By non-parametrically incorporating labeled samples in this way, PAWS extends the distance-metric loss used in self-supervised methods such as BYOL and SwAV to the semi-supervised setting. Despite the simplicity of the approach, PAWS outperforms other semi-supervised methods across architectures, setting a new state-of-the-art for a ResNet-50 on ImageNet trained with either 10% or 1% of the labels, reaching 75.5% and 66.5% top-1 respectively. PAWS requires 4x to 12x less training than the previous best methods.


翻译:本文提出了一种创新的学习方法,通过预测支持样本的视图任务(PAWS)来预测支持样本的显示任务(PAWS) 。 该方法培训了一个模型,以尽量减少一致性损失,从而确保同一未贴标签实例的不同观点被分配到类似的假标签。 伪标签是非对称生成的, 方法是将图像视图的表示方式与一组随机抽样标签图像的表示方式进行比较。 查看显示和标签表示方式之间的距离被用来提供对以10%或1%的标签为软假标签的分类标签的加权。 通过非对称地纳入标签样本, PAWS将诸如BYOL和SWAV等自我监督方法中使用的远程计量损失延伸至半监督设置。 尽管这种方法简单, PAWS比以往的最佳方法少了4x到12x的培训。

1
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年3月7日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
77+阅读 · 2020年6月11日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员