The click behavior is the most widely-used user positive feedback in recommendation. However, simply considering each click equally in training may suffer from clickbaits and title-content mismatching, and thus fail to precisely capture users' real satisfaction on items. Dwell time could be viewed as a high-quality quantitative indicator of user preferences on each click, while existing recommendation models do not fully explore the modeling of dwell time. In this work, we focus on reweighting clicks with dwell time in recommendation. Precisely, we first define a new behavior named valid read, which helps to select high-quality click instances for different users and items via dwell time. Next, we propose a normalized dwell time function to reweight click signals in training for recommendation. The Click reweighting model achieves significant improvements on both offline and online evaluations in real-world systems.
翻译:点击行为是建议中最广泛使用的用户积极反馈。 但是,只要在培训中以同样的方式考虑每次点击可能会因点击和标题内容不匹配而受到影响,从而无法准确地捕捉到用户对项目的真正满意度。 每点击一次,时间可以被视为用户偏好的一个高质量的量化指标,而现有的建议模式并不完全探索居住时间的模型。在这项工作中,我们的重点是用空闲时间对点击进行重新加权。确切地说,我们首先定义了一种名为有效阅读的新行为,它有助于为不同用户和项目选择高质量的点击实例,通过空闲时间进行选择。接下来,我们提出一个正常的常住时间功能,以便在培训中为建议重新加权点击信号。点击再加权模式在现实世界系统中的离线和在线评价方面都取得了显著的改进。</s>