We provide a general method to convert a "primal" black-box algorithm for solving regularized convex-concave minimax optimization problems into an algorithm for solving the associated dual maximin optimization problem. Our method adds recursive regularization over a logarithmic number of rounds where each round consists of an approximate regularized primal optimization followed by the computation of a dual best response. We apply this result to obtain new state-of-the-art runtimes for solving matrix games in specific parameter regimes, obtain improved query complexity for solving the dual of the CVaR distributionally robust optimization (DRO) problem, and recover the optimal query complexity for finding a stationary point of a convex function.
翻译:暂无翻译