Considering an environment containing polygonal obstacles, we address the problem of planning motions for a pair of planar robots connected to one another via a cable of limited length. Much like prior problems with a single robot connected via a cable to a fixed base, straight line-of-sight visibility plays an important role. The present paper shows how the reduced visibility graph provides a natural discretization and captures the essential topological considerations very effectively for the two robot case as well. Unlike the single robot case, however, the bounded cable length introduces considerations around coordination (or equivalently, when viewed from the point of view of a centralized planner, relative timing) that complicates the matter. Indeed, the paper has to introduce a rather more involved formalization than prior single-robot work in order to establish the core theoretical result -- a theorem permitting the problem to be cast as one of finding paths rather than trajectories. Once affirmed, the planning problem reduces to a straightforward graph search with an elegant representation of the connecting cable, demanding only a few extra ancillary checks that ensure sufficiency of cable to guarantee feasibility of the solution. We describe our implementation of A${}^\star$ search, and report experimental results. Lastly, we prescribe an optimal execution for the solutions provided by the algorithm.


翻译:考虑到一个包含多边形障碍的环境,我们处理规划一对用有限长度的电缆相互连接的平板机器人动议的问题。就像以前一个机器人通过电缆连接到固定基地的问题一样,直视直线可见度具有重要作用。本文件展示了降低的可见度图如何为两个机器人案件提供了自然分解,并非常有效地捕捉了基本的地形因素。然而,与单一机器人案件不同的是,封闭的电缆长度提出了围绕协调(或同等的,从中央规划员的观点来看,相对时间)的考虑,使问题复杂化。事实上,该文件必须引入比先前的单一机器人工作更涉及正规化的问题,以确立核心理论结果 -- -- 一种理论允许将问题描绘成寻找路径而不是轨迹的问题。一旦确认,规划问题将降低为直截的平面搜索,对连接的电缆进行优雅的描述,只要求少数额外的辅助检查,以确保电缆足以保证解决方案的可行性。我们用A++++的搜索和实验结果描述了我们执行A+++的实验结果。

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
101+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
0+阅读 · 2021年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员