We present a method for contraction-based feedback motion planning of locally incrementally exponentially stabilizable systems with unknown dynamics that provides probabilistic safety and reachability guarantees. Given a dynamics dataset, our method learns a deep control-affine approximation of the dynamics. To find a trusted domain where this model can be used for planning, we obtain an estimate of the Lipschitz constant of the model error, which is valid with a given probability, in a region around the training data, providing a local, spatially-varying model error bound. We derive a trajectory tracking error bound for a contraction-based controller that is subjected to this model error, and then learn a controller that optimizes this tracking bound. With a given probability, we verify the correctness of the controller and tracking error bound in the trusted domain. We then use the trajectory error bound together with the trusted domain to guide a sampling-based planner to return trajectories that can be robustly tracked in execution. We show results on a 4D car, a 6D quadrotor, and a 22D deformable object manipulation task, showing our method plans safely with learned models of high-dimensional underactuated systems, while baselines that plan without considering the tracking error bound or the trusted domain can fail to stabilize the system and become unsafe.
翻译:我们提出了一个基于收缩的基于收缩的反馈运动规划方法,该系统具有未知的动态,提供概率安全性和可达性保障。在动态数据集中,我们的方法学习了动态的深度控制-情感近似值。为了找到一个可以使用该模型进行规划的可信任域,我们获得了模型错误的利普施奇茨常数的估计值,该常数与给定概率一样有效,在培训数据周围的一个区域,提供了一个局部的、空间变化式模型错误。我们为受此模型错误影响的收缩控制器测出了轨迹跟踪错误,然后学习了优化此跟踪约束的控制器。我们在一个给定的概率下,我们核查了控制器的正确性,并追踪了该模型在受信任域的错误。我们随后使用轨迹错误与可信任域结合,指导一个基于取样的规划器返回在实施时可以严格跟踪的轨迹。我们展示了4D型汽车、6D号方位模型和22D型天体可变的天体操纵器操作任务的结果,展示了我们的方法计划,在不可靠的情况下,可以安全地显示我们的方法计划,在不可靠基线下进行稳定的轨道跟踪,同时考虑安全的系统,可以进入。