We propose NeuralWOZ, a novel dialogue collection framework that uses model-based dialogue simulation. NeuralWOZ has two pipelined models, Collector and Labeler. Collector generates dialogues from (1) user's goal instructions, which are the user context and task constraints in natural language, and (2) system's API call results, which is a list of possible query responses for user requests from the given knowledge base. Labeler annotates the generated dialogue by formulating the annotation as a multiple-choice problem, in which the candidate labels are extracted from goal instructions and API call results. We demonstrate the effectiveness of the proposed method in the zero-shot domain transfer learning for dialogue state tracking. In the evaluation, the synthetic dialogue corpus generated from NeuralWOZ achieves a new state-of-the-art with improvements of 4.4% point joint goal accuracy on average across domains, and improvements of 5.7% point of zero-shot coverage against the MultiWOZ 2.1 dataset.
翻译:我们提议NeuralWoZ, 这是一种使用基于模式对话模拟的新的对话收集框架。 NeuralWoZ 有两个编程模式, 收集器和 Labeler。 收集器生成的对话来自:(1) 用户的目标指示, 即自然语言中的用户背景和任务限制, 以及(2) 系统 API 呼叫结果, 这是一份对特定知识库用户请求的可能查询答复清单。 Labeler 将生成的对话编成一个多选题, 其中从目标指示和API 调用结果中提取候选人标签。 我们展示了在零速域为对话跟踪而进行传输学习的拟议方法的有效性。 在评价中, NeuralWoZ 生成的合成对话材料实现了一个新的最新状态, 提高了4.4% 点的跨域平均联合目标准确度, 改进了多WOZ 2.1数据集的零点覆盖点5.7%。