We study dynamic algorithms robust to adaptive input generated from sources with bounded capabilities, such as sparsity or limited interaction. For example, we consider robust linear algebraic algorithms when the updates to the input are sparse but given by an adversary with access to a query oracle. We also study robust algorithms in the standard centralized setting, where an adversary queries an algorithm in an adaptive manner, but the number of interactions between the adversary and the algorithm is bounded. We first recall a unified framework of [HKM+20, BKM+22, ACSS23] for answering $Q$ adaptive queries that incurs $\widetilde{\mathcal{O}}(\sqrt{Q})$ overhead in space, which is roughly a quadratic improvement over the na\"{i}ve implementation, and only incurs a logarithmic overhead in query time. Although the general framework has diverse applications in machine learning and data science, such as adaptive distance estimation, kernel density estimation, linear regression, range queries, and point queries and serves as a preliminary benchmark, we demonstrate even better algorithmic improvements for (1) reducing the pre-processing time for adaptive distance estimation and (2) permitting an unlimited number of adaptive queries for kernel density estimation. Finally, we complement our theoretical results with additional empirical evaluations.


翻译:我们研究了对来自具有有限能力的源产生的自适应输入做出稳健反应的动态算法,例如,我们考虑当更新输入是稀疏的,但却由具有查询oracle的对手生成时的稳健线性代数算法。我们还研究了在标准集中设置中的强大算法,其中对手以自适应方式查询算法,但对手与算法之间的交互次数受到限制。我们首先回顾了[HKM + 20,BKM + 22,ACSS23]的统一框架,该框架适用于回答 $Q$ 自适应查询,其空间开销为 $\widetilde{\mathcal{O}}(\sqrt{Q})$,大致上比不能胜任的实施方式改善了一个二次,只增加了查询时间的对数开销。虽然一般框架在机器学习和数据科学中具有不同的应用,例如自适应距离估计、核密度估计、线性回归、范围查询和点查询,并且作为初步基准,但我们证明了更好的算法改进,以(1) 减少自适应距离估计的预处理时间和(2) 允许在核密度估计中使用无限个自适应查询。最后,我们通过额外的实证评估来补充我们的理论结果。 标注: 我们研究对来自具有有限能力的源产生的自适应输入做出稳健反应的动态算法,例如,我们考虑当更新输入是稀疏的,但却由具有查询oracle的对手生成时的稳健线性代数算法。 -> *Query oracle* 我们还研究了在标准集中设置中的强大算法,其中对手以自适应方式查询算法,但对手与算法之间的交互次数受到限制。-> *centralized setting*

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员