We consider the coded caching problem with an additional privacy constraint that a user should not get any information about the demands of the other users. We first show that a demand-private scheme for $N$ files and $K$ users can be obtained from a non-private scheme that serves only a subset of the demands for the $N$ files and $NK$ users problem. We further use this fact to construct a demand-private scheme for $N$ files and $K$ users from a particular known non-private scheme for $N$ files and $NK-K+1$ users. It is then demonstrated that, the memory-rate pair $(M,\min \{N,K\}(1-M/N))$, which is achievable for non-private schemes with uncoded transmissions, is also achievable under demand privacy. We further propose a scheme that improves on these ideas by removing some redundant transmissions. The memory-rate trade-off achieved using our schemes is shown to be within a multiplicative factor of 3 from the optimal when $K < N$ and of 8 when $N\leq K$. Finally, we give the exact memory-rate trade-off for demand-private coded caching problems with $N\geq K=2$.
翻译:我们认为编码缓冲问题与额外的隐私限制有关,即用户不应获得关于其他用户需求的任何信息。我们首先表明,一个只满足对美元文档和纳克元用户需求的一小部分需求的非私募计划可以从一个只满足对美元文档和纳克元用户需求的非私募计划获得,我们进一步利用这个事实来为一个已知的非私募计划的文件和1美元用户建立一个需求-私募计划,用于一个已知的非私募计划,用于文件和NK+1美元用户。然后证明,对于非私募计划来说,在需求隐私下也可以实现的关于美元文档和美元用户的需求-私募款计划。我们进一步提出一个计划,通过消除一些多余的传输来改进这些想法。使用我们的计划实现的记忆-率交易,在美元 < 纳克元 > 和 8 美元\ 纳克元 > 的内存率是最佳的3倍系数。最后,我们提出了对非私募资金传输的非私募计划的贸易需求。