We propose a one-to-many matching estimator of the average treatment effect based on propensity scores estimated by isotonic regression. The method relies on the monotonicity assumption on the propensity score function, which can be justified in many applications in economics. We show that the nature of the isotonic estimator can help us to fix many problems of existing matching methods, including efficiency, choice of the number of matches, choice of tuning parameters, robustness to propensity score misspecification, and bootstrap validity. As a by-product, a uniformly consistent isotonic estimator is developed for our proposed matching method.
翻译:我们根据等离子回归估计的偏度分数提出平均处理效果的一到多个匹配估计值。 这种方法依赖于对偏度分函数的单一度假设, 这在经济学的许多应用中是有道理的。 我们显示, 等离子体估计值的性质可以帮助我们解决现有匹配方法的许多问题, 包括效率、 匹配数的选择、 调试参数的选择、 适应性分数偏差的稳健性、 靴套有效性。 作为副产品, 我们为拟议匹配方法开发了一个一致的等离子估计值计算器。