The total variation diminishing (TVD) property is an important tool for ensuring nonlinear stability and convergence of numerical solutions of one-dimensional scalar conservation laws. However, it proved to be challenging to extend this approach to two-dimensional problems. Using the anisotropic definition for discrete total variation (TV), it was shown in \cite{Goodman} that TVD solutions of two-dimensional hyperbolic equations are at most first order accurate. We propose to use an alternative definition resulting from a full discretization of the semi-discrete Raviart-Thomas TV. We demonstrate numerically using the second order discontinuous Galerkin method that limited solutions of two-dimensional hyperbolic equations are TVD in means when total variation is computed using the new definition.
翻译:完全变差减少(TVD)属性是确保单维天秤保护法非线性稳定性和数字解决方案趋同的一个重要工具。 但是,将这一方法扩大到二维问题却证明具有挑战性。 使用离散整体变异的厌食性定义(TV),在\cite{Goodman}中显示,二维双曲方程的TVD解决方案最多最先准确。 我们提议使用由半分立的Raviart-Thomas电视完全分解而得出的替代定义。 我们用数字显示,使用二次顺序不连续的Galerkin方法,在使用新定义计算全异变时,限制二维双偏方程方程解决方案的手段是TVD。