Mention detection is an important preprocessing step for annotation and interpretation in applications such as NER and coreference resolution, but few stand-alone neural models have been proposed able to handle the full range of mentions. In this work, we propose and compare three neural network-based approaches to mention detection. The first approach is based on the mention detection part of a state of the art coreference resolution system; the second uses ELMO embeddings together with a bidirectional LSTM and a biaffine classifier; the third approach uses the recently introduced BERT model. Our best model (using a biaffine classifier) achieves gains of up to 1.8 percentage points on mention recall when compared with a strong baseline in a HIGH RECALL coreference annotation setting. The same model achieves improvements of up to 5.3 and 6.2 p.p. when compared with the best-reported mention detection F1 on the CONLL and CRAC coreference data sets respectively in a HIGH F1 annotation setting. We then evaluate our models for coreference resolution by using mentions predicted by our best model in start-of-the-art coreference systems. The enhanced model achieved absolute improvements of up to 1.7 and 0.7 p.p. when compared with our strong baseline systems (pipeline system and end-to-end system) respectively. For nested NER, the evaluation of our model on the GENIA corpora shows that our model matches or outperforms state-of-the-art models despite not being specifically designed for this task.
翻译:在NER 和 CORE 分辨率 等应用中, 提及检测是说明和解释的一个重要预处理步骤, 在 NER 和 COTION 分辨率 等应用中, 提及和解释是一个重要的预处理步骤, 但提出能够处理所有提及内容的独立的神经模型的却很少。 在这项工作中, 我们提出并比较了三种基于神经网络的探测方法, 以提及检测。 第一种方法是, 提及状态的查找部分; 第二种是ELMO 与双向LSTM 和双向双向 LSTM 和双向分解器一起嵌入; 第三种方法使用最近推出的BERT 模型。 我们的最佳模型(使用双向分类器) 与高RECAL 坐标比注设置的强基线相比, 能够实现最高1.8个百分点的引用点。 同一模型在CONLLLLL和 CRC CRAC 的参考数据中,, 分别在高F1 说明中, 我们用我们最佳模型预测的首期模型预测的引用率, 与我们的GEN 系统相比, 改进了比重的模型。