We present a new approach, the Topograph, which reconstructs underlying physics processes, including the intermediary particles, by leveraging underlying priors from the nature of particle physics decays and the flexibility of message passing graph neural networks. The Topograph not only solves the combinatoric assignment of observed final state objects, associating them to their original mother particles, but directly predicts the properties of intermediate particles in hard scatter processes and their subsequent decays. In comparison to standard combinatoric approaches or modern approaches using graph neural networks, which scale exponentially or quadratically, the complexity of Topographs scales linearly with the number of reconstructed objects. We apply Topographs to top quark pair production in the all hadronic decay channel, where we outperform the standard approach and match the performance of the state-of-the-art machine learning technique.
翻译:利用图神经网络进行粒子物理过程的拓扑重构
我们提出了一种新的方法-拓扑图(Topograph)来重构底层物理过程,包括中间粒子,利用粒子物理衰变的本质先验知识和信息传递图神经网络的灵活性。 Topograph不仅解决了观察到的末态对象的组合分配,将它们与它们的原始母粒子相关联,而且直接预测了硬散裂过程中的中间粒子及其随后的衰变的属性。与标准的组合方法或现代使用图神经网络的方法相比,Topographs的复杂度随着重新构建的对象数量呈线性增长,而不是指数或二次增长。我们将Topographs应用于全强子衰变渠道中的顶夸克对产生,其中我们的性能优于标准方法,并达到了最先进的机器学习技术的性能。