In this paper, an implicit unified gas-kinetic wave-particle method is developed without the time step constraint. Under the acceptable temporal resolution, the Courant number can be set as large as possible. Non-equilibrium transport flow physics can be accurately captured without imposing any artificial closure form of the distribution function. The evolution process of the scheme is controlled by two temporal parameters, namely the physical time step resolution and the numerical time step resolution. Based on the physical time step resolution, the governing equations in a discretized form will be constructed, where the evolution of the genuinely non-equilibrium flow physics will not depend on the variation of the numerical marching time step. The wave-particle decomposition and their evolution follow an entropy-satisfying process. Besides the invariance of the physical solution on the numerical time step, the implicit unified gas-kinetic wave-particle method has also asymptotic-preserving property and regime-adaptive complexity in the representation of the physical solution. Multidimensional 2D and 3D algorithms are developed and used in the engineering applications of inertial confinement fusion. Other multiscale tests are also included to validate the numerical method for the capturing of multi-scale non-equilibrium transport.
翻译:在本文中,开发了一种隐含的统一气体动力波粒子方法,没有时间步骤限制。在可接受的时间分辨率下,可设定尽可能大的库兰特数字。非平衡运输流物理学可以精确地捕捉,而不会强加任何人为封闭式的分布功能。该方法的演进过程受两种时间参数的控制,即物理时间步骤分辨率和数字时间步骤分辨率。根据物理时间步骤分辨率,将构建一种分解形式的治理方程,其中真正的非平衡流物理学的演进将不取决于数字行进时间步的变异。波平面粒变异及其演进将遵循一个可令令令令令令令令令令令令令令令令令令令令令令人满意的过程。除了在数字时间步骤上物理解决办法的变异外,隐含的统一气体动力波粒子法方法还将在物理溶解的表示中保留属性和系统适应性复杂度。在数字流流物理学步骤的演进过程中,还开发并应用了标准2D算法,用于惯性运动的工程应用中,包括用于对等级的多级变压的多级控制方法。