For the Lagrange interpolation over a triangular domain, we propose an efficient algorithm to rigorously evaluate the interpolation error constant under the maximum norm by using the finite element method (FEM). In solving the optimization problem corresponding to the interpolation error constant, the maximum norm in the constraint condition is the most difficult part to process. To handle this difficulty, a novel method is proposed by combining the orthogonality of the interpolation associated to the Fujino--Morley FEM space and the convex-hull property of the Bernstein representation of functions in the FEM space. Numerical results for the lower and upper bounds of the interpolation error constant for triangles of various types are presented to verify the efficiency of the proposed method.
翻译:对于三角域的拉格朗内插,我们建议一种有效的算法,通过使用有限元素法(FEM),严格评估最大规范下的内插错误常数。在解决与内插误差常数相对应的优化问题时,制约条件中的最大规范是最难处理的部分。要解决这一难题,我们建议一种新颖的方法,将藤野-莫里FEM空间的相关内插和伯恩斯坦在FEM空间的函数表示中的二次曲线体属性结合起来。对各种三角形的内插误差常数的下限和上限提出了数值结果,以核实拟议方法的效率。