A new method is proposed for modelling the yearly maxima of sub-daily precipitation, with the aim of producing spatial maps of return level estimates. Yearly precipitation maxima are modelled using a Bayesian hierarchical model with a latent Gaussian field, with the blended generalised extreme value (bGEV) distribution used as a substitute for the more standard generalised extreme value (GEV) distribution. Inference is made less wasteful with a novel two-step procedure that performs separate modelling of the scale parameter of the bGEV distribution using peaks over threshold data. Fast inference is performed using integrated nested Laplace approximations (INLA) together with the stochastic partial differential equation (SPDE) approach, both implemented in \texttt{R-INLA}. The model is fitted to yearly maxima of sub-daily precipitation from the south of Norway, and is able to quickly produce high-resolution return level maps with uncertainty. Using cross-validation, we find that the proposed two-step procedure provides an improved model fit when modelling sub-daily precipitation data.
翻译:提出了一种新的方法,用于模拟每日次降水量的年度最大值,目的是制作回流水平估计的空间地图。年度降水最大值采用贝叶西亚等级模型,带有潜高山场,混合的极端值分布(bGEV)用于替代更标准的通用极端值分布。推论用一种新的两步程序来减少浪费,该程序使用峰值超过阈值的数据对BGEV分布的尺度参数进行单独模拟。我们发现,拟议的两步程序在采用综合的巢状拉普近似(INLA)和Stochacific部分差分方程(SPDE)方法的同时进行了快速推论,这两种方法均在\ textt{R-INLA}中实施。该模型适合挪威南部次日降水量的年度最大值,并能迅速生成具有不确定性的高分辨率返回水平地图。我们通过交叉校验,发现拟议的两步程序提供了在模拟次降水量数据时更适合的模型。