In data systems, activities or events are continuously collected in the field to trace their proper executions. Logging, which means recording sequences of events, can be used for analyzing system failures and malfunctions, and identifying the causes and locations of such issues. In our research we focus on creating an Anomaly detection models for system logs. The task of anomaly detection is identifying unexpected events in dataset, which differ from the normal behavior. Anomaly detection models also assist in data systems analysis tasks. Modern systems may produce such a large amount of events monitoring every individual event is not feasible. In such cases, the events are often aggregated over a fixed period of time, reporting the number of times every event has occurred in that time period. This aggregation facilitates scaling, but requires a different approach for anomaly detection. In this research, we present a thorough analysis of the aggregated data and the relationships between aggregated events. Based on the initial phase of our research we present graphs representations of our aggregated dataset, which represent the different relationships between aggregated instances in the same context. Using the graph representation, we propose Multiple-graphs autoencoder MGAE, a novel convolutional graphs-autoencoder model which exploits the relationships of the aggregated instances in our unique dataset. MGAE outperforms standard graph-autoencoder models and the different experiments. With our novel MGAE we present 60% decrease in reconstruction error in comparison to standard graph autoencoder, which is expressed in reconstructing high-degree relationships.


翻译:数据系统、 活动或事件持续收集, 以追踪其正确的执行。 记录, 即记录事件序列, 可用于分析系统故障和故障, 并查明这些问题的原因和地点。 我们的研究重点是为系统日志创建异常检测模型。 异常检测的任务是查明数据集中与正常行为不同的意外事件。 异常检测模型还有助于数据系统分析任务。 现代系统可能生成大量事件, 监测每个事件, 并不可行。 在这种情况下, 事件通常在固定的时间内汇总, 汇报每个事件在那个时期发生的次数。 这种汇总有助于缩放, 但需要不同的异常检测方法。 在这次研究中, 我们对汇总数据和汇总事件之间的关系进行了透彻分析。 根据我们研究的初始阶段, 我们展示了我们汇总数据集的图示, 它代表了同一背景下的汇总实例之间的不同关系。 使用图表显示, 我们提议多幅图解的自动解剖 MAGAE, 在一个新型的图表中, 一个新型的图形模型, 一个新型的图像模型, 以及一个新型的GAARC 模型中, 一个新型的图表模型, 一个新的的图形模型, 将我们图表中, 的图表的图表中, 的图表中, 的图表中, 的图表中, 的图表中, 的图表中, 将浏览的图表中, 的图表中, 的图表中, 的图表中, 的图表中, 图表中的图表中的图表中的图表中, 的图表中的图表中的图表中, 的模型中, 。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
114+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年3月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
3+阅读 · 2018年6月14日
Arxiv
6+阅读 · 2018年3月19日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
114+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员