Scientific machine learning has become an increasingly popular tool for solving high dimensional differential equations and constructing surrogates of complex physical models. In this work, we propose a deep learning based numerical method for solving elliptic partial differential equations (PDE) with random coefficients. We elucidate the stochastic variational formulation for the problem by recourse to the direct method of calculus of variations. The formulation allows us to reformulate the random coefficient PDE into a stochastic optimization problem, subsequently solved by a combination of Monte Carlo sampling and deep-learning approximation. The resulting method is simple yet powerful. We carry out numerical experiments to demonstrate the efficiency and accuracy of the proposed method.
翻译:科学机器学习已成为解决高维差异方程式和建造复杂物理模型替代方程式的日益流行的工具。 在这项工作中,我们提出一种基于深深深学习的数字方法,用随机系数解决椭圆部分差异方程式(PDE),我们通过直接的变异微积分法来阐明这一问题的随机变异配方。该配方使我们能够将随机系数PDE重新表述为随机系数优化问题,随后通过蒙特卡洛取样和深学习近似法相结合加以解决。由此产生的方法既简单又有力。我们进行了数字实验,以证明拟议方法的效率和准确性。