Spatial models for occupancy data are used to estimate and map the true presence of a species, which may depend on biotic and abiotic factors as well as spatial autocorrelation. Traditionally researchers have accounted for spatial autocorrelation in occupancy data by using a correlated normally distributed site-level random effect, which might be incapable of identifying nontraditional spatial dependence such as discontinuities and abrupt transitions. Machine learning approaches have the potential to identify and model nontraditional spatial dependence, but these approaches do not account for observer errors such as false absences. By combining the flexibility of Bayesian hierarchal modeling and machine learning approaches, we present a general framework to model occupancy data that accounts for both traditional and nontraditional spatial dependence as well as false absences. We demonstrate our framework using six synthetic occupancy data sets and two real data sets. Our results demonstrate how to identify and model both traditional and nontraditional spatial dependence in occupancy data which enables a broader class of spatial occupancy models that can be used to improve predictive accuracy and model adequacy.
翻译:使用占用数据的空间模型来估计和绘制物种的真实存在情况,这些模型可能取决于生物和非生物因素以及空间自动关系。传统上,研究人员使用通常分布在现场一级的相关随机效应来计算占用数据的空间自动关系,这些效应可能无法确定非传统的空间依赖性,例如不连续和突然过渡。机器学习方法有可能确定和模拟非传统的空间依赖性,但这些方法没有考虑到观察员的错误,例如假缺勤。通过结合巴耶西亚等级建模和机器学习方法的灵活性,我们提出了一个用于模拟占用数据的一般框架,其中既考虑到传统和非传统空间依赖性,又考虑到假缺勤。我们用六个合成占用数据集和两个真实数据集来展示我们的框架。我们的成果表明如何识别和模拟在占用数据中的传统和非传统空间依赖性,从而能够使用更广泛的空间占用模型来改进预测准确性和模型充足性。