Crowd-sourcing is an increasingly popular tool for image analysis in animal ecology. Computer vision methods that can utilize crowd-sourced annotations can help scale up analysis further. In this work we study the potential to do so on the challenging task of fine-grained counting. As opposed to the standard crowd counting task, fine-grained counting also involves classifying attributes of individuals in dense crowds. We introduce a new dataset from animal ecology to enable this study that contains 1.7M crowd-sourced annotations of 8 fine-grained classes. It is the largest available dataset for fine-grained counting and the first to enable the study of the task with crowd-sourced annotations. We introduce methods for generating aggregate "ground truths" from the collected annotations, as well as a counting method that can utilize the aggregate information. Our method improves results by 8% over a comparable baseline, indicating the potential for algorithms to learn fine-grained counting using crowd-sourced supervision.
翻译:众包是一种日益受欢迎的动物生态学图像分析工具。 计算机视觉方法可以使用众包说明来帮助进一步扩大分析。 在这项工作中,我们研究在精细计数这一具有挑战性的任务中这样做的潜力。 与标准的人群计数任务相反, 细细计还涉及对密集人群中个人属性的分类。 我们从动物生态中引入了一个新的数据集, 使这项研究能够包含1 700M 众包8个细分级的图表。 这是用于细计的最大可用数据集, 并且第一个能够用众包说明来进行任务研究。 我们引入了从收集的图表中产生总体“ 地面真相” 的方法, 以及一种能够利用汇总信息的计数方法。 我们的方法比可比基线提高了8%的结果, 表明算法有可能通过众包监督来学习精细计数。