The current paper presents a new approach to multilinear dynamical systems analysis and control. The approach is based upon recent developments in tensor decompositions and a newly defined algebra of circulants. In particular, it is shown that under the right tensor multiplication operator, a third order tensor can be written as a product of third order tensors that is analogous to a traditional matrix eigenvalue decomposition where the "eigenvectors" become eigenmatrices and the "eigenvalues" become eigen-tuples. This new development allows for a proper tensor eigenvalue decomposition to be defined and has natural extension to linear systems theory through a \textit{tensor-exponential}. Through this framework we extend many of traditional techniques used in linear system theory to their multilinear counterpart.
翻译:本文介绍了多线性动态系统分析和控制的新办法。 这种方法基于最近热分解和新定义的循环器代数的最新发展。 特别是, 已经表明, 在正确的振动倍倍增操作器下, 第3级抗拉可以写成第三级抗拉的产物, 这类似于传统矩阵的乙基值分解, 即“ 生物元体” 变成乙基体, “ 生物值” 变成乙基体图例。 这一新发展允许通过\ textit{ tensor- Explential} 来定义适当的高原值分解并自然扩展至线性系统理论。 通过这个框架, 我们将线性系统理论中使用的许多传统技术推广到其多线性对应技术 。