In this paper, we present a new bottom-up one-stage method for whole-body pose estimation, which we name "hierarchical point regression," or HPRNet for short, referring to the network that implements this method. To handle the scale variance among different body parts, we build a hierarchical point representation of body parts and jointly regress them. Unlike the existing two-stage methods, our method predicts whole-body pose in a constant time independent of the number of people in an image. On the COCO WholeBody dataset, HPRNet significantly outperforms all previous bottom-up methods on the keypoint detection of all whole-body parts (i.e. body, foot, face and hand); it also achieves state-of-the-art results in the face (75.4 AP) and hand (50.4 AP) keypoint detection. Code and models are available at https://github.com/nerminsamet/HPRNet.git.


翻译:在本文中,我们提出了一个新的自下而上一阶段的全体估计方法,我们用“等级点回归”或HPRNet来命名,简称为“等级点回归”,简称HPRNet,指采用这种方法的网络。为了处理不同身体部分之间的比例差异,我们建立了身体部分的等级代表,并共同倒退它们。与现有的两阶段方法不同,我们的方法预测整个身体在固定的时间里构成,而与图像中的人数无关。在COCO 整体点回归数据集中,HPRNet大大超过以前所有全体部分(即身体、脚、脸和手)关键点探测方法的所有自下而上的方法;它还实现了面部(75.4 AP)和手(50.4 AP)关键点检测的状态结果。代码和模型可在https://github.com/nerminsamet/HPRNet.git上查阅。

0
下载
关闭预览

相关内容

专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月12日
CVPR 2019 论文开源项目合集
专知
18+阅读 · 2019年4月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关VIP内容
专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月12日
CVPR 2019 论文开源项目合集
专知
18+阅读 · 2019年4月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员