Extracting information on fluid motion directly from images is challenging. Fluid flow represents a complex dynamic system governed by the Navier-Stokes equations. General optical flow methods are typically designed for rigid body motion, and thus struggle if applied to fluid motion estimation directly. Further, optical flow methods only focus on two consecutive frames without utilising historical temporal information, while the fluid motion (velocity field) can be considered a continuous trajectory constrained by time-dependent partial differential equations (PDEs). This discrepancy has the potential to induce physically inconsistent estimations. Here we propose an unsupervised learning based prediction-correction scheme for fluid flow estimation. An estimate is first given by a PDE-constrained optical flow predictor, which is then refined by a physical based corrector. The proposed approach outperforms optical flow methods and shows competitive results compared to existing supervised learning based methods on a benchmark dataset. Furthermore, the proposed approach can generalize to complex real-world fluid scenarios where ground truth information is effectively unknowable. Finally, experiments demonstrate that the physical corrector can refine flow estimates by mimicking the operator splitting method commonly utilised in fluid dynamical simulation.
翻译:直接从图像中提取流体运动的信息具有挑战性。流体流是一个复杂的动态系统,由纳维埃-斯托克斯方程式管理。一般光学流方法一般是为硬体运动设计的,因此如果直接用于流体运动估计,就会挣扎。此外,光学流方法只侧重于两个连续的框架,而不使用历史时间信息,而流体运动(速度场)可被视为受时间依赖的局部偏差方程制约的连续轨迹。这种差异有可能引起物理上的不一致性估计。我们在这里提出一个以未经监督的学习为基础的流体估计校正预测-纠正方案。一个未经监督的光流预测方法首先用PDE控制的光流预测器进行估计,然后由物理校正者加以改进。拟议方法优于光流法方法,并显示与基于基准数据集的现有受监督的学习方法相比的竞争结果。此外,拟议方法可以概括为复杂的真实世界流体液体假设,其中地面真相信息实际上无法识别。最后,实验表明物理校正器可以通过模拟操作者在流体动态模拟中共同使用断法来改进流体图估计。