In this paper, we propose a Neural Architecture Search strategy based on self supervision and semi-supervised learning for the task of semantic segmentation. Our approach builds an optimized neural network (NN) model for this task by jointly solving a jigsaw pretext task discovered with self-supervised learning over unlabeled training data, and, exploiting the structure of the unlabeled data with semi-supervised learning. The search of the architecture of the NN model is performed by dynamic routing using a gradient descent algorithm. Experiments on the Cityscapes and PASCAL VOC 2012 datasets demonstrate that the discovered neural network is more efficient than a state-of-the-art hand-crafted NN model with four times less floating operations.
翻译:在本文中,我们提出了一个基于自我监督和半监督学习的神经结构搜索战略,以完成语义分割任务。我们的方法为这项任务建立了一个优化的神经网络模式。我们的方法是共同解决一个以自我监督学习而不是无标签培训数据而发现的奇格锯托辞任务,利用半监督学习的无标签数据结构。搜索NN模式的架构是通过动态路径,使用梯度下行算法进行。城市景景和PASAL VOC 2012 数据集的实验表明,发现的神经网络比最先进的手工艺型NNN模型效率更高,四倍于浮动操作。