An Important tool in the field topological data analysis is known as persistent Homology (PH) which is used to encode abstract representation of the homology of data at different resolutions in the form of persistence diagram (PD). In this work we build more than one PD representation of a single image based on a landmark selection method, known as local binary patterns, that encode different types of local textures from images. We employed different PD vectorizations using persistence landscapes, persistence images, persistence binning (Betti Curve) and statistics. We tested the effectiveness of proposed landmark based PH on two publicly available breast abnormality detection datasets using mammogram scans. Sensitivity of landmark based PH obtained is over 90% in both datasets for the detection of abnormal breast scans. Finally, experimental results give new insights on using different types of PD vectorizations which help in utilising PH in conjunction with machine learning classifiers.
翻译:实地地形数据分析中的一个重要工具被称为持久性同族学(PH),用于以持久性图示(PD)的形式,将不同分辨率的数据同系物的抽象表示编码。在这项工作中,我们根据一个里程碑式选择方法(称为局部二进制模式),构建了一个以上的PD单一图像的表示法,将图像中不同类型的本地质素编码起来。我们使用了不同的PD矢量,使用了持久性景观、持久性图像、持久性宾氏(Betti Curve)和统计数据。我们用乳房X光扫描,用两种公开提供的乳房异常检测数据集,测试了基于PH的拟议里程碑式数据的有效性。在两个数据集中,基于PH里程碑式的感知力都超过90%,用于检测异常的乳房扫描。最后,实验结果为使用不同类型的PD矢量提供了新的见解,有助于与机器学习分类师一起使用PH。