We demonstrate the potential of the state-of-the-art OpenAI GPT-4 large language model to engage in meaningful interactions with Astronomy papers using in-context prompting. To optimize for efficiency, we employ a distillation technique that effectively reduces the size of the original input paper by 50\%, while maintaining the paragraph structure and overall semantic integrity. We then explore the model's responses using a multi-document context (ten distilled documents). Our findings indicate that GPT-4 excels in the multi-document domain, providing detailed answers contextualized within the framework of related research findings. Our results showcase the potential of large language models for the astronomical community, offering a promising avenue for further exploration, particularly the possibility of utilizing the models for hypothesis generation.
翻译:我们通过使用上下文激发技术,展示了当下最先进的OpenAI GPT-4大型语言模型与天文研究论文进行有意义互动的潜力。为了提高效率,我们采用了一种精馏技术,能够有效地缩小原始输入文献的大小(同时保持段落结构和整体语义完整性)50\%。然后,我们使用多文档上下文(十个精馏文献)探索模型的响应。我们的研究结果表明,GPT-4在多文档领域表现出色,在相关研究发现的框架内提供了详细的语境答案。我们的发现展示出大型语言模型在天文学团体中的潜力,为进一步的研究探索提供了有前途的途径,尤其是利用这些模型进行假说生成的可能性。