Despite recent advances in geometric modeling, 3D mesh modeling still involves a considerable amount of manual labor by experts. In this paper, we introduce Mesh Draping: a neural method for transferring existing mesh structure from one shape to another. The method drapes the source mesh over the target geometry and at the same time seeks to preserve the carefully designed characteristics of the source mesh. At its core, our method deforms the source mesh using progressive positional encoding. We show that by leveraging gradually increasing frequencies to guide the neural optimization, we are able to achieve stable and high quality mesh transfer. Our approach is simple and requires little user guidance, compared to contemporary surface mapping techniques which rely on parametrization or careful manual tuning. Most importantly, Mesh Draping is a parameterization-free method, and thus applicable to a variety of target shape representations, including point clouds, polygon soups, and non-manifold meshes. We demonstrate that the transferred meshing remains faithful to the source mesh design characteristics, and at the same time fits the target geometry well.
翻译:尽管在几何模型方面最近有所进展, 3D网目模型仍然涉及大量专家的体力劳动。 在本文中, 我们引入了“ 网目捕捉” : 将现有网目结构从一个形状转移到另一个形状的神经系统方法。 方法将源的网格遮盖在目标几何上, 同时试图保存源网格精心设计的特性。 在其核心方面, 我们的方法利用渐进的定位编码, 使源网目网形变形。 我们通过利用逐渐增加的频率来引导神经系统优化, 能够实现稳定和高质量的网目传输。 我们的方法很简单, 需要很少用户指导, 与当代地表绘图技术相比, 而这些技术依赖于对称或仔细的手动调整。 最重要的是, 网目捕方法是一种无参数化方法, 因而适用于各种目标形状显示, 包括点云、 多边形汤和非皮层缩模。 我们证明, 被转移的网目仍然忠实于源网目设计特性, 同时也符合目标的几何测量功能 。