Cyber-physical systems (CPSs) use learning-enabled components (LECs) extensively to cope with various complex tasks under high-uncertainty environments. However, the dataset shifts between the training and testing phase may lead the LECs to become ineffective to make large-error predictions, and further, compromise the safety of the overall system. In our paper, we first provide the formal definitions for different types of dataset shifts in learning-enabled CPS. Then, we propose an approach to detect the dataset shifts effectively for regression problems. Our approach is based on the inductive conformal anomaly detection and utilizes a variational autoencoder for regression model which enables the approach to take into consideration both LEC input and output for detecting dataset shifts. Additionally, in order to improve the robustness of detection, layer-wise relevance propagation (LRP) is incorporated into our approach. We demonstrate our approach by using an advanced emergency braking system implemented in an open-source simulator for self-driving cars. The evaluation results show that our approach can detect different types of dataset shifts with a small number of false alarms while the execution time is smaller than the sampling period of the system.
翻译:网络物理系统(CPS) 广泛使用学习驱动组件(LECs) 应对高不确定性环境中的各种复杂任务。然而,培训和测试阶段之间的数据集变化可能导致LECs无法有效进行大辐射预测,进而损害整个系统的安全性。在我们的论文中,我们首先为学习驱动的CPS中不同类型的数据集变化提供正式定义。然后,我们提出一种方法,以有效检测回归问题的数据数据集变化。我们的方法是以进化兼容异常现象探测为基础,并使用一个变异自动编码器用于回归模型,使该方法能够考虑到LEC的投入和输出来检测数据集变化。此外,为了提高检测的稳健性,将分层关联性传播纳入我们的方法。我们通过使用在开源模拟器中安装的先进的应急布拉克系统来演示自我驱动汽车。我们的评估结果表明,我们的方法可以检测不同类型的数据数据集变化,同时使用少量的虚假警报器进行取样,而执行的时间比系统要小。