Attacks on Industrial Control Systems (ICS) can lead to significant physical damage. While offline safety and security assessments can provide insight into vulnerable system components, they may not account for stealthy attacks designed to evade anomaly detectors during long operational transients. In this paper, we propose a predictive online monitoring approach to check the safety of the system under potential stealthy attacks. Specifically, we adapt previous results in reachability analysis for attack impact assessment to provide an efficient algorithm for online safety monitoring for Linear Time-Invariant (LTI) systems. The proposed approach relies on an offline computation of symbolic reachable sets in terms of the estimated physical state of the system. These sets are then instantiated online, and safety checks are performed by leveraging ideas from ellipsoidal calculus. We illustrate and evaluate our approach using the Tennessee-Eastman process. We also compare our approach with the baseline monitoring approaches proposed in previous work and assess its efficiency and scalability. Our evaluation results demonstrate that our approach can predict in a timely manner if a false data injection attack will be able to cause damage, while remaining undetected. Thus, our approach can be used to provide operators with real-time early warnings about stealthy attacks.


翻译:虽然离线安全和安保评估可以提供对脆弱系统组成部分的洞察力,但可能无法说明在长期运行的瞬间飞行中为躲避异常探测器而设计的隐形袭击。在本文件中,我们提议采用预测在线监测方法,以检查系统在潜在的隐形攻击下的安全性。具体地说,我们调整了以前攻击影响评估的可达性分析结果,以便为线性时间-惯性(LTI)系统的在线安全监测提供有效的算法。拟议方法依赖于对系统估计物理状态的象征性可达数据集进行离线计算。这些系统随后即时在线运行,安全检查是通过利用叶子分子微积木的想法进行。我们用田纳西-东方过程来说明和评估我们的方法。我们还将我们的方法与先前工作中提议的基线监测方法进行比较,并评估其效率和可缩放性。我们的评价结果表明,如果假数据注入攻击能够造成损害,我们的方法可以及时预测,同时不进行探测。因此,我们的方法可以用来向实际攻击的操作者提供实时警报。

0
下载
关闭预览

相关内容

必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
用Now轻松部署无服务器Node应用程序
前端之巅
16+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年7月27日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
用Now轻松部署无服务器Node应用程序
前端之巅
16+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员