We introduce LIMES, a new method for learning with non-stationary streaming data, inspired by the recent success of meta-learning. The main idea is not to attempt to learn a single classifier that would have to work well across all occurring data distributions, nor many separate classifiers, but to exploit a hybrid strategy: we learn a single set of model parameters from which a specific classifier for any specific data distribution is derived via classifier adaptation. Assuming a multi-class classification setting with class-prior shift, the adaptation step can be performed analytically with only the classifier's bias terms being affected. Another contribution of our work is an extrapolation step that predicts suitable adaptation parameters for future time steps based on the previous data. In combination, we obtain a lightweight procedure for learning from streaming data with varying class distribution that adds no trainable parameters and almost no memory or computational overhead compared to training a single model. Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches, especially with respect to the relevant real-world metric of lowest within-day accuracy.
翻译:我们引入了非静止流数据学习的新方法LIMES, 这是一种非静止流数据的新方法,它受最近元学习的成功启发。主要的想法不是试图学习一个单一的分类器,该分类器必须在所有正在发生的数据分布中运作良好,也不是许多不同的分类器,而是要利用混合战略:我们学习一套单一的模型参数,从中得出任何特定数据分配的具体分类器,通过分类器的适应性来进行。假设一个多级分类设置,先行转换,适应步骤只能通过分析方式进行,只有分类器的偏差条件受到影响。我们工作的另一项贡献是外推法步骤,根据以前的数据预测未来时间步骤的适当调整参数。加在一起,我们从不同类别分布的流数据中学习了一种轻量程序,该流数据没有增加可训练的参数,而且与培训单一模型相比,几乎没有记忆或计算间接费用。在使用Twitter数据进行的一系列示范性任务实验表明,LIMES的精确度高于替代方法,特别是在相关的实际世界范围内最低精确度指标方面。