The aim of this paper is to formalize a new continual semi-supervised learning (CSSL) paradigm, proposed to the attention of the machine learning community via the IJCAI 2021 International Workshop on Continual Semi-Supervised Learning (CSSL-IJCAI), with the aim of raising field awareness about this problem and mobilizing its effort in this direction. After a formal definition of continual semi-supervised learning and the appropriate training and testing protocols, the paper introduces two new benchmarks specifically designed to assess CSSL on two important computer vision tasks: activity recognition and crowd counting. We describe the Continual Activity Recognition (CAR) and Continual Crowd Counting (CCC) challenges built upon those benchmarks, the baseline models proposed for the challenges, and describe a simple CSSL baseline which consists in applying batch self-training in temporal sessions, for a limited number of rounds. The results show that learning from unlabelled data streams is extremely challenging, and stimulate the search for methods that can encode the dynamics of the data stream.
翻译:本文的目的是正式确定通过国际JCAI 2021 连续半支持学习国际讲习班(CSCL-IJCAI)提请机器学习界注意的一个新的连续半监督学习模式(CSSL),目的是提高外地对这一问题的认识,并动员其朝这个方向努力。在正式界定了连续半监督学习以及适当的培训和测试协议之后,该文件提出了两个新的基准,专门用来评估CSSL两项重要的计算机愿景任务:活动识别和人群计数。我们描述了基于这些基准建立的持续活动识别(CAR)和连续人群计数(CCC)的挑战,为挑战提议的基线模型,并描述了一个简单的CSSL基线,其中包括在时间课上应用批次自我培训,用于数量有限的回合。结果显示,从未贴标签的数据流中学习是极具挑战性的,并激励寻找能够将数据流动态编码的方法。