Whose labels should a machine learning (ML) algorithm learn to emulate? For ML tasks ranging from online comment toxicity to misinformation detection to medical diagnosis, different groups in society may have irreconcilable disagreements about ground truth labels. Supervised ML today resolves these label disagreements implicitly using majority vote, which overrides minority groups' labels. We introduce jury learning, a supervised ML approach that resolves these disagreements explicitly through the metaphor of a jury: defining which people or groups, in what proportion, determine the classifier's prediction. For example, a jury learning model for online toxicity might centrally feature women and Black jurors, who are commonly targets of online harassment. To enable jury learning, we contribute a deep learning architecture that models every annotator in a dataset, samples from annotators' models to populate the jury, then runs inference to classify. Our architecture enables juries that dynamically adapt their composition, explore counterfactuals, and visualize dissent.
翻译:机器学习( ML) 算法应该学习模仿谁的标签? 对于 ML 从在线评论毒性到错误检测到医学诊断等任务来说, 社会上的不同群体可能会在地面真相标签上出现无法调和的分歧。 今天, 监督的 ML 以多数票间接地解决这些标签分歧, 以压倒少数群体标签。 我们引入陪审团学习, 监督的 ML 方法, 通过陪审团的隐喻明确解决这些分歧: 界定哪些人或群体, 以何种比例决定分类者的预测。 例如, 陪审团的在线毒性学习模式可能集中关注女性和黑人陪审员, 后者通常是网上骚扰的目标。 为了让陪审团学习, 我们贡献了一种深层次的学习结构, 以在数据集中模拟每个说明员, 样本来自说明者模型的样本来吸引陪审团, 然后进行推论的分类。 我们的结构使得陪审团能够动态地调整其组成, 探究反事实, 并直视不同意见。