We propose a test-based elastic integrative analysis of the randomized trial and real-world data to estimate treatment effect heterogeneity with a vector of known effect modifiers. When the real-world data are not subject to bias, our approach combines the trial and real-world data for efficient estimation. Utilizing the trial design, we construct a test to decide whether or not to use real-world data. We characterize the asymptotic distribution of the test-based estimator under local alternatives. We provide a data-adaptive procedure to select the test threshold that promises the smallest mean square error and an elastic confidence interval with a good finite-sample coverage property.
翻译:我们提议对随机试验和真实世界数据进行基于测试的弹性综合分析,以估计处理效果异同和已知效果改变者矢量。当真实世界数据不受偏差影响时,我们的方法将试验和真实世界数据结合起来,以便有效估计。我们利用试验设计,设计一个测试来决定是否使用真实世界数据。我们把基于测试的估测员在当地替代物下无症状分布定性为特征。我们提供了一个数据调整程序,以选择试验阈值,保证最小的平均平方差和弹性信任区间,具有良好的有限覆盖属性。