As a promising tool to navigate in the vast chemical space, artificial intelligence (AI) is leveraged for drug design. From the year 2017 to 2021, the number of applications of several recent AI models (i.e. graph neural network (GNN), recurrent neural network (RNN), variation autoencoder (VAE), generative adversarial network (GAN), flow and reinforcement learning (RL)) in drug design increases significantly. Many relevant literature reviews exist. However, none of them provides an in-depth summary of many applications of the recent AI models in drug design. To complement the existing literature, this survey includes the theoretical development of the previously mentioned AI models and detailed summaries of 42 recent applications of AI in drug design. Concretely, 13 of them leverage GNN for molecular property prediction and 29 of them use RL and/or deep generative models for molecule generation and optimization. In most cases, the focus of the summary is the models, their variants, and modifications for specific tasks in drug design. Moreover, 60 additional applications of AI in molecule generation and optimization are briefly summarized in a table. Finally, this survey provides a holistic discussion of the abundant applications so that the tasks, potential solutions, and challenges in AI-based drug design become evident.


翻译:2017年至2021年,利用人工智能(AI)作为在广阔的化学空间中航行的有利工具,在药物设计中,利用人工智能(AI)进行药物设计。从2017年到2021年,最近几个人工智能模型(如图形神经网络(GNN)、经常神经网络(RNN)、变异自动coder(VAE)、变异自动coder(GAN)、基因对抗性网络(RL)、流动和强化学习(RL))应用在药物设计中显著增加。许多相关的文献审查都存在,但没有一份深入概述近期人工智能模型在药物设计中的许多应用。为补充现有文献,本调查包括以前提到的人工智能模型的理论发展以及最近42个人工智能在药物设计中应用的详细摘要。具体来说,其中13个模型利用GNNNN用于分子特性预测,29个模型使用RL和/或深层基因化模型进行分子生成和优化。在多数情况下,摘要的重点是模型、其变式和对药物设计具体任务的修改。此外,在分子生成和优化过程中,还有60个新的人工智能应用。该表格中简要概述了。该调查为大量的药物应用。最后提供了对基于药物设计的潜在设计中的巨大挑战。该研究提供了一个完整的研究。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
49+阅读 · 2020年12月16日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员