With the recent advances of conversational recommendations, the recommender system is able to actively and dynamically elicit user preference via conversational interactions. To achieve this, the system periodically queries users' preference on attributes and collects their feedback. However, most existing conversational recommender systems only enable the user to provide absolute feedback to the attributes. In practice, the absolute feedback is usually limited, as the users tend to provide biased feedback when expressing the preference. Instead, the user is often more inclined to express comparative preferences, since user preferences are inherently relative. To enable users to provide comparative preferences during conversational interactions, we propose a novel comparison-based conversational recommender system. The relative feedback, though more practical, is not easy to be incorporated since its feedback scale is always mismatched with users' absolute preferences. With effectively collecting and understanding the relative feedback from an interactive manner, we further propose a new bandit algorithm, which we call RelativeConUCB. The experiments on both synthetic and real-world datasets validate the advantage of our proposed method, compared to the existing bandit algorithms in the conversational recommender systems.


翻译:由于最近对话建议的进展,建议系统能够积极和动态地通过对话互动来吸引用户偏好。为了实现这一点,系统定期询问用户对属性的偏好,并收集他们的反馈。然而,大多数现有的对话建议系统只使用户能够对属性提供绝对反馈。在实践中,绝对反馈通常有限,因为用户在表达偏好时往往提供有偏见的反馈。相反,用户往往更倾向于表达比较偏好,因为用户偏好本质上是相对的。为了让用户在对话互动期间提供比较偏好,我们提议了一个新的比较性对话建议系统。相对的反馈虽然比较实用,但不容易纳入,因为其反馈规模总是与用户的绝对偏好不匹配。通过有效收集和理解互动方式的相对反馈,我们进一步提议采用新的波段算法,我们称之为相对的CONUCB。关于合成和真实世界数据集的实验证实了我们拟议方法的优势,与对话建议系统中的现有的波段算法相比。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员